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Spatial complex behavior in nonchaotic flow systems
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The convective instability induces the phenomenon of spatial sensitivity to the boundary conditions. We
introduce a quantity, the “spatial” Lyapunov exponent, to characterize this kind of complex behavior, in
nonchaotic but convectively unstable flow systems. Then we establish a relation between this spatial-
complexity index and the comoving Lyapunov expon¢8t063-651X97)05810-9

PACS numbdps): 05.45+hb, 47.27.Te

The main property of chaos is the sensitive dependence afation of this phenomenon and its possible quantitative re-
the evolution on the initial conditions, i.e., small perturba-lation with the comoving Lyapunov exponents. The defini-
tions on the initial state grow exponentially in tifig]. This  tion of the comoving Lyapunov exponeit(v), for these
is usually assumed as the characterizing property of chaosxtended systems, may be given as folld@k If 6xy(0) is
and it is quantified by a positive value of the maximal a perturbation on the boundary at the titse0, in a frame of
Lyapunov exponent ;. reference that moves along the system with velogityO, at

Beside the chaotic systems, highly nontrivial behaviordarget, this perturbation i©(exd\(v)t]); when there exists
can appear also in systems which are not chadte, a range of velocity for which (v) is positive, then the sys-
A1<0). Let us mention the systems with asymptoticallytem is said to be convectively unstable. The interesting situ-
stable fixed points, but with fractal boundaries of the attracation arises when the usual Lyapunov exponent,
tion basing[2], and the chaotic scattering phenomen8h  \;=\(v=0), is negative.
where the “chaos” is just transient. In many papers the boundary condition is kept fixed, i.e.,

An interesting situation can occur in high dimensionalx,(t)=x*, where oftenx* is an unstable fixed point of the
systems, like the following chain of maps with unidirectional single mapx(n+1)=f(x(n)) [10]. Here, following Deissler

coupling: [5] and Pikovsky| 7], we adopt a more general time depen-
dent boundary conditionxy(t)=f(t) with f(t) a known
Xn(t+1)=(1—c)fa(Xn(t)) +CfalXq-1(1)), (1) function, that may be periodic, quasiperiodic, or obtained by

a chaotic system. It is natural to wonder how an uncertainty
wheret is the discrete timen=1,2,3... is aspatial index,  §xq(t)=0(e), with e<1, on the knowledge of the boundary
andxo(t) is a given boundary condition; a typical choice for conditions will affect the system. In this letter we consider
the local map isf,(x) =ax(1—x). This type of models are only the case of infinitesimal perturbations, so that we may
quite natural candidates for the description of systems with gafely assume thatx, evolves according to the tangent vec-
privileged direction, e.g., boundary layer, thermal convec+tor equations of the systeft).
tion, and wind-induced water wavé4]. For the moment we do not consider, for the sake of sim-

After the seminal papers of Deissler and Kang&pit is  plicity, intermittency effects, that is, we neglect finite time
now well known that nontrivial phenomena can take place irfluctuations of the comoving Lyapunov exponent. The uncer-
systems with asymmetric couplings, even in the absence ahinty 6x,(t), on the determination of the variable at the site
chaos §,=<0). In particular, if the system is convectively n, is given by the superposition of the evolvéa,(t— 7)
unstable the spatial structure can be very complex and thgith r=n/v:
external noise can have an important role in the formation
and amplification of this structuré,6]. Some authors, e.g., . o
Pikovsky[7] and Kozlovet al.[8], stressed the fact that the &n(t)wj Oxo(t—r)eM) d”_ff e eldy.(2)
“irregularity” of these systems seems to increase withAn
analysis ofx,, as a function ot (by means of some standard Since we are interested in the asymptotic, in space, behavior,
methods for the characterization of dynamical systems, sucke., largen, we can write
as, for instance, the power spectrum, the return map, the

Grassberger-Procaccia correlation dimensjel typically OXn(t)~ee™, ©)

shows thatx; is more irregular tharxy, X, more irregular . ) } )

thanx,, and so on. where, in the particular case of a nonintermittent system,
In spite of the clear evidence of a spatial “complexity” in N

these _nonchaot?c systems, up to now, as _far_as we know, y=max (v)_ (4)

there is not a simple and systematic quantitative character- v U

Equation(4) gives a link between the comoving Lyapunov
*Also at INFN, Sezione di Roma 1, Rome, Italy. exponent and the “spatial” Lyapunov exponept a more
TAlso at INFM, Sezione di Roma 1, Rome, Italy. precise and operative definition of which is given by
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versusa at fixed c=0.7 for the logistic map
i fa(x)=ax(1—x); the boundary condition is
quasiperiodic:  Xq(t)=0.5+0.4sifwt),  with
w=2m(5"2-1)/2.
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1/ |8%,) of the quantityy* . A first simple approximation for it, actu-
y=lim —{In : (5 ally a lower bound, is given by
n—o
*
where the brackets mean a time average. So(&qgestab- ylz)\(v ), (10)
lishes a relation between the convective instability of a sys- v*
tem and its sensitivity to the boundary conditions, which can
be considered a sort of spatial complexity. wherev* is the velocity at which\ attains its maximum

Let us remark again that E¢4) holds exactly only in the value. The analysis of the long time behavior of many im-
absence of intermittency; in this case it can be shown fronpulsive perturbations makes it possible to obtaifi and
Eqg. (4) that our spatial index can be written in a simple way A (v*) without the knowledge of (v) as a function of. An
in terms of the “spatial Lyapunov exponentgi(A) intro-  improvement of this approximation can be performed in the
duced in Ref[11]: following way. BesideN(v*), one computes the usual
Lyapunov exponenk ;=\ (0), then one estimates the func-
tion A(v), by assuming it is the parabole,(v) passing
through the point (Q,;) with maximum\(v*) for v=0v*
and, finally, one determineg,= max,[\y(v)/v]. Typically vy,

In the general case the relation is rather more complicated. [f Very close(within a few percentto y*.

. . . ~ In Fig. 1 we showy, v*, y,, andy, versusa at a fixed
we define the effective comoving Lyapunov exponkf(v), B AR > B
instead of Eq(2) we have value ofc (c=0.7) for the logistic mapf,(x) =ax(1—x),

and using a quasiperiodic boundary condition,
_ Xo(t)=0.5+0.4singt), with w=2m(y/5—1)/2. There is a
5xn(t)~ef elM@ingy, (7)  large range of values of the paramedeior which vy is rather

far from y*; for instance, ab=3.74 we havey=0.34 and
v*=0.26. The difference is an effect of the intermittency;
this may be pointed out by looking at what happens with the
mapf,(x)=ax mod 1: in this case we find that, all over the

A(v)
y=maxT=,u,(A=0). (6)

v

and therefore

5Xtypical N - 1N :
y=lim }< |n|5X“|> = lim Emm: maxM ) explored range of variation af, y andy*, from a numerical
oo 11 € n— v U point of view, are indistinguishablgheir relative difference

(8) is smaller than 10°).
We may obtain a further indication of the fact that the
Ina generic case, because of the ﬂuctuations, it is not pO.’:‘non-neg|igib|e fluctuations of the Comoving Lyapunov expo-
sible to writey in terms of\(v). Nevertheless it is possible nents are at the origin of the marked differenceydfom its
to state a lower bound: lower bound, by introducing, following Ref12], the gener-
alized spatial Lyapunov exponenits(q). These quantities

(N(v)) ANv) allow us to characterize the fluctuations in the growth of the
y=Mmax =max——=y". (9 perturbations along the chain:
v v
The evaluation of the function(v) needs a heavy compu- L(q)= lim E|n< n q>_ (12)
tational effort, however, one can find good approximations n—oll
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FIG. 2. ¢? (+) and y—y* (O) versusa at
¢=0.7; the boundary condition is the same as
Fig. 1.
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By means of standard arguments of probability theory, onghat of the y variable of the Heon map:
has that(a) Ls(q)/q is @ monotonic nondecreasing function y(t+1)=—ay(t)?>+ By(t—1)+1 (with typical values of

of q; (b) dLs(Q)/dQ|q=o= v, and (¢) L4(q)=yq+ 302 the parametera= 1.4 and3=0.3), y ando? as functions of
for small g, where 02:|imnam((|n|é><n/6|—7ﬂ)2>/n . The a are not very different from the case witty(t) a quasi-
shape ofL4(q)/q depends on the details of the dynamics, periodic function.

however,L ((q) is roughly determined by the two parameters In conclusion we have shown how in a nonchaotic, but
v ando®. The reason for having introduced this function is convectively unstable flow, where the convective instability
that one expects some relation between the fluctuations a@fiduces a spatial sensitivity to the boundary conditions, it is
the spatial-complexity index, and the fluctuations of the possible to introduce an ind€a sort of “spatial” Lyapunov
effective comoving Lyapunov exponent, and it is muchexponent for the quantitative characterization of this “spa-
easier to compute the former than the latter. Figure 2 showsial complexity.” Moreover, there exists a relati¢a bound

that, in the case of the logistic map, as we expected, thBetween this spatial complexity and the comoving Lyapunov
parametero? (that is related to the variance of the spatial exponents.

fluctuations is small(large in the region where/* is a good ) )
(bad approximation ofy. We thank K. Kaneko and A. Pikovsky for useful discus-

We stress that all the results above do not depend to8l0ns and correspondence. We thank A. Politi, S. Ruffo, and
much on the details of the boundary conditiongt) used. A. Torcini for having pointed out to us the existence of Eq.
Indeed we found that iko(t) has a chaotic behavior, like (6).
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