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Spatial complex behavior in nonchaotic flow systems

D. Vergni, M. Falcioni,* and A. Vulpiani†

Dipartimento di Fisica, Universita` ‘‘La Sapienza,’’ Piazzale Aldo Moro 2, 00185 Roma, Italy
~Received 4 February 1997!

The convective instability induces the phenomenon of spatial sensitivity to the boundary conditions. We
introduce a quantity, the ‘‘spatial’’ Lyapunov exponent, to characterize this kind of complex behavior, in
nonchaotic but convectively unstable flow systems. Then we establish a relation between this spatial-
complexity index and the comoving Lyapunov exponent.@S1063-651X~97!05810-8#

PACS number~s!: 05.45.1b, 47.27.Te
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The main property of chaos is the sensitive dependenc
the evolution on the initial conditions, i.e., small perturb
tions on the initial state grow exponentially in time@1#. This
is usually assumed as the characterizing property of ch
and it is quantified by a positive value of the maxim
Lyapunov exponentl1.

Beside the chaotic systems, highly nontrivial behavi
can appear also in systems which are not chaotic~i.e.,
l1,0). Let us mention the systems with asymptotica
stable fixed points, but with fractal boundaries of the attr
tion basins@2#, and the chaotic scattering phenomenon@3#,
where the ‘‘chaos’’ is just transient.

An interesting situation can occur in high dimension
systems, like the following chain of maps with unidirection
coupling:

xn~ t11!5~12c! f a„xn~ t !…1c fa„xn21~ t !…, ~1!

wheret is the discrete time,n51,2,3, . . . is aspatial index,
andx0(t) is a given boundary condition; a typical choice f
the local map isf a(x)5ax(12x). This type of models are
quite natural candidates for the description of systems wi
privileged direction, e.g., boundary layer, thermal conv
tion, and wind-induced water waves@4#.

After the seminal papers of Deissler and Kaneko@5# it is
now well known that nontrivial phenomena can take place
systems with asymmetric couplings, even in the absenc
chaos (l1<0). In particular, if the system is convective
unstable the spatial structure can be very complex and
external noise can have an important role in the format
and amplification of this structure@5,6#. Some authors, e.g.
Pikovsky @7# and Kozlovet al. @8#, stressed the fact that th
‘‘irregularity’’ of these systems seems to increase withn. An
analysis ofxn as a function oft ~by means of some standar
methods for the characterization of dynamical systems, s
as, for instance, the power spectrum, the return map,
Grassberger-Procaccia correlation dimension@9#! typically
shows thatx1 is more irregular thanx0, x2 more irregular
thanx1, and so on.

In spite of the clear evidence of a spatial ‘‘complexity’’ i
these nonchaotic systems, up to now, as far as we kn
there is not a simple and systematic quantitative charac
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ization of this phenomenon and its possible quantitative
lation with the comoving Lyapunov exponents. The defi
tion of the comoving Lyapunov exponentl(v), for these
extended systems, may be given as follows@5#. If dx0(0) is
a perturbation on the boundary at the timet50, in a frame of
reference that moves along the system with velocityv.0, at
large t, this perturbation isO„exp@l(v)t#…; when there exists
a range of velocity for whichl(v) is positive, then the sys
tem is said to be convectively unstable. The interesting s
ation arises when the usual Lyapunov expone
l15l(v50), is negative.

In many papers the boundary condition is kept fixed, i
x0(t)5x* , where oftenx* is an unstable fixed point of the
single mapx(n11)5 f „x(n)… @10#. Here, following Deissler
@5# and Pikovsky@7#, we adopt a more general time depe
dent boundary condition:x0(t)5 f (t) with f (t) a known
function, that may be periodic, quasiperiodic, or obtained
a chaotic system. It is natural to wonder how an uncertai
dx0(t)5O(e), with e!1, on the knowledge of the boundar
conditions will affect the system. In this letter we consid
only the case of infinitesimal perturbations, so that we m
safely assume thatdxn evolves according to the tangent ve
tor equations of the system~1!.

For the moment we do not consider, for the sake of s
plicity, intermittency effects, that is, we neglect finite tim
fluctuations of the comoving Lyapunov exponent. The unc
tainty dxn(t), on the determination of the variable at the s
n, is given by the superposition of the evolveddx0(t2t)
with t5n/v:

dxn~ t !;E dx0~ t2t!el~v !tdv5eE e[l~v !/v]ndv. ~2!

Since we are interested in the asymptotic, in space, beha
i.e., largen, we can write

dxn~ t !;eegn, ~3!

where, in the particular case of a nonintermittent system

g5max
v

l~v !

v
. ~4!

Equation~4! gives a link between the comoving Lyapuno
exponent and the ‘‘spatial’’ Lyapunov exponentg, a more
precise and operative definition of which is given by
6170 © 1997 The American Physical Society
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FIG. 1. g (1), g1 (3), gp (h), andg* (s)
versus a at fixed c50.7 for the logistic map
f a(x)5ax(12x); the boundary condition is
quasiperiodic: x0(t)50.510.4sin~vt), with
v52p~51/221)/2.
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g5 lim
n→`

1

nK ln
udxnu

e L , ~5!

where the brackets mean a time average. So Eq.~4! estab-
lishes a relation between the convective instability of a s
tem and its sensitivity to the boundary conditions, which c
be considered a sort of spatial complexity.

Let us remark again that Eq.~4! holds exactly only in the
absence of intermittency; in this case it can be shown fr
Eq. ~4! that our spatial index can be written in a simple w
in terms of the ‘‘spatial Lyapunov exponents’’m(L) intro-
duced in Ref.@11#:

g5max
v

l~v !

v
5m~L50!. ~6!

In the general case the relation is rather more complicate
we define the effective comoving Lyapunov exponentl̃ t(v),
instead of Eq.~2! we have

dxn~ t !;eE e[ l̃ t~v !/v]ndv, ~7!

and therefore

g5 lim
n→`

1

nK ln
udxnu

e L 5 lim
n→`

1

n
ln

udxn
typicalu
e

5K max
v

l̃ t~v !

v L .

~8!

In a generic case, because of the fluctuations, it is not p
sible to writeg in terms ofl(v). Nevertheless it is possibl
to state a lower bound:

g>max
v

^ l̃ t~v !&
v

5max
v

l~v !

v
[g* . ~9!

The evaluation of the functionl(v) needs a heavy compu
tational effort, however, one can find good approximatio
-
n

m

If

s-

s

of the quantityg* . A first simple approximation for it, actu
ally a lower bound, is given by

g15
l~v* !

v*
, ~10!

where v* is the velocity at whichl attains its maximum
value. The analysis of the long time behavior of many i
pulsive perturbations makes it possible to obtainv* and
l(v* ) without the knowledge ofl(v) as a function ofv. An
improvement of this approximation can be performed in
following way. Beside l(v* ), one computes the usua
Lyapunov exponentl15l(0), then one estimates the func
tion l(v), by assuming it is the parabolalp(v) passing
through the point (0,l1) with maximuml(v* ) for v5v*
and, finally, one determinesgp5maxv@lp(v)/v#. Typically gp
is very close~within a few percent! to g* .

In Fig. 1 we showg, g* , g1, andgp versusa at a fixed
value ofc (c50.7) for the logistic map,f a(x)5ax(12x),
and using a quasiperiodic boundary conditio
x0(t)50.510.4sin(vt), with v52p(A521)/2. There is a
large range of values of the parametera for which g is rather
far from g* ; for instance, ata53.74 we haveg50.34 and
g* 50.26. The difference is an effect of the intermittenc
this may be pointed out by looking at what happens with
map f a(x)5ax mod 1: in this case we find that, all over th
explored range of variation ofa, g andg* , from a numerical
point of view, are indistinguishable~their relative difference
is smaller than 1026).

We may obtain a further indication of the fact that th
non-negligible fluctuations of the comoving Lyapunov exp
nents are at the origin of the marked difference ofg from its
lower bound, by introducing, following Ref.@12#, the gener-
alized spatial Lyapunov exponentsLs(q). These quantities
allow us to characterize the fluctuations in the growth of
perturbations along the chain:

Ls~q!5 lim
n→`

1

n
lnK U dxn

e UqL . ~11!
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FIG. 2. s2 (1) and g2g* (h) versusa at
c50.7; the boundary condition is the same
Fig. 1.
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By means of standard arguments of probability theory, o
has that~a! Ls(q)/q is a monotonic nondecreasing functio

of q; ~b! dLs(q)/dquq505g; and ~c! Ls(q)5gq1 1
2 s2q2,

for small q, where s25 limn→`^(lnudxn /eu2gn)2&/n . The
shape ofLs(q)/q depends on the details of the dynamic
however,Ls(q) is roughly determined by the two paramete
g ands2. The reason for having introduced this function
that one expects some relation between the fluctuation
the spatial-complexity indexg, and the fluctuations of the
effective comoving Lyapunov exponent, and it is mu
easier to compute the former than the latter. Figure 2 sh
that, in the case of the logistic map, as we expected,
parameters2 ~that is related to the variance of the spat
fluctuations! is small~large! in the region whereg* is a good
~bad! approximation ofg.

We stress that all the results above do not depend
much on the details of the boundary conditionsx0(t) used.
Indeed we found that ifx0(t) has a chaotic behavior, like
p
,
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,
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that of the y variable of the He´non map:
y(t11)52ay(t)21by(t21)11 ~with typical values of
the parametersa51.4 andb50.3),g ands2 as functions of
a are not very different from the case withx0(t) a quasi-
periodic function.

In conclusion we have shown how in a nonchaotic, b
convectively unstable flow, where the convective instabil
induces a spatial sensitivity to the boundary conditions, i
possible to introduce an index~a sort of ‘‘spatial’’ Lyapunov
exponent! for the quantitative characterization of this ‘‘spa
tial complexity.’’ Moreover, there exists a relation~a bound!
between this spatial complexity and the comoving Lyapun
exponents.
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